Potrebna pomoć oko neobičnog zadatka. Unapred HVALA

Potrebna pomoć oko neobičnog zadatka. Unapred HVALA

offline
  • Pridružio: 07 Sep 2011
  • Poruke: 27
  • Gde živiš: Sta te briga!

Evo zadatka
Niz je definisan na sledeći način: njegovi prvi članovi su 1,2,3,4,5. Dalje je svaki sledeći (počevši od 6-og) jednak proizvodu svih prethodnih člahova MINUS 1. Dokažite da je zbir kvadrata prvih 70 članova niza jednak njihovom proizvodu. Neutral Question

Unapred hvala!



Registruj se da bi učestvovao u diskusiji. Registrovanim korisnicima se NE prikazuju reklame unutar poruka.
offline
  • Pridružio: 15 Feb 2011
  • Poruke: 157
  • Gde živiš: Kovin

Dati niz mozemo oznaziti sa a(n). Sada lako mozes uociti da vazi za n>=6 sldece:
a(n+1)= (a(n)+1)*a(n) - 1 tj. a(n+1)=a(n)^2 + a(n) -1 sto je ekvivalento sa
a(n+1) - a(n)=a(n)^2 - 1

sada ubacujemo u gornju formulu vrednosti n od 6 do 70 i dobijamo jednakosti:
a(7)-a(6) = a(6)^2 - 1
a( 8 ) - a(7) = a(7)^2 -1
....
....
a(71)-a(70) = a(70)^2 - 1
sabiranjem ovih jednakosti dobijas:
a(71)-a(6) = a(6)^2+a(7)^2+...+a(70)^2 - 65
imajuci u vdu da je a(6)=119.
sada kada na obe strane jednakosti dodamo a(1)^2 +a(2)^2+..+a(5)^2 = 1^2 + 2^2+...+5^2=
55 dobijamo:
55+a(71)-119 = a(1)^2+a(2)^2+...+a(70)^2 -65 sto je ekvivalentno sa:
a(71)+1 = a(1)^2+a(2)^2+...+a(70)^2 sada znamo da je a(71) = a(1)*a(2)*...*a(70) -1
pa kada uvrstimo u ovo prethodno dobijamo:
a(1)*a(2)*...*a(70) = a(1)^2+a(2)^2+...+a(70)^2 sto je i trebalo dokazati.



Ko je trenutno na forumu
 

Ukupno su 904 korisnika na forumu :: 14 registrovanih, 1 sakriven i 889 gosta   ::   [ Administrator ] [ Supermoderator ] [ Moderator ] :: Detaljnije

Najviše korisnika na forumu ikad bilo je 3466 - dana 01 Jun 2021 17:07

Korisnici koji su trenutno na forumu:
Korisnici trenutno na forumu: ALBION101, Frunze, Georgius, ILGromovnik, laki_bb, mane123, Metanoja, MidnighT_AlieN, mikki jons, milenko crazy north, nextyamb, Niko Bitan, NoOneEver Dreams, yrraf